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Abstract Many fields, such as medicine and biology,
are producing an increasingly large volume using high-
resolution digital imaging techniques, and this makes effec-
tive data analysis and visualization of these volumes more
and more difficult. Volume reduction, decreasing the volume
size, is one of the promising directions to solve this chal-
lenge for interactive volume visualization. In this paper, we
present an automatic volume data reduction method called
surface carving. It intelligently removes contextual voxels
while preserving important features, and finally generates an
optimal volume at the desired reduction size/rate. For large
volume data sets, a multilevel banded method is introduced
to gracefully overcome the memory limit and speed up vol-
ume reduction. We compare our technique with traditional
cropping and scaling approaches and demonstrate the effec-
tiveness and efficiency of our method with several volume
data sets.

Keywords Automatic · Volume reduction ·
Surface carving

1 Introduction

Volume visualization has been widely used to explore 3D vol-
ume data sets in different fields, ranging from medicine to
geophysics. With the development of various high-resolution
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digital imaging techniques, the size of the acquired volume
is increased significantly. These large volumes make the data
analysis and visualization tasks on desktop machines increas-
ingly difficult, even impossible for mobile devices due to the
limited resources. Volume reduction is a common solution
to overcome this challenge for interactive volume visualiza-
tion applications, such as mobile applications with limited
screen size [1] and web applications with limited internet
bandwidth [2].

The most popular volume reduction methods are vol-
ume downsampling and cropping. Standard volume down-
sampling methods are often used in the hierarchical multi-
resolution volume construction, such as subsampling [3] and
kernel-based filtering [4]. However, they generally treat the
data feature and context, i.e., unimportant features/voxels,
uniformly, which results in unrecognizable tiny features and
artifacts. Cropping could remove the context, but it only
excludes voxels from the volume periphery due to the box
geometric constraint and may also remove the feature itself.
Although the cropping method could be much easier to con-
trol the reduction rate than the downsampling method, it is not
flexible and effective enough to select the content to reduce. A
more effective volume reduction method should intelligently
remove the contextual voxels with a more flexible geometric
constraint while preserving important features.

In this paper, we propose an automatic volume reduction
method called surface carving. It is a multi-pass method to
iteratively and successively reduce the volume until it reaches
the desired size or reduction rate. In each pass, surface carv-
ing searches for a connected manifold surface with the least
distortion or artifact in the volume space among the x, y,
and z directions, and carves out the voxels on the connected
manifold surface to achieve volume reduction. In each direc-
tion, finding the carved surface is formulated as a minimum
energy problem, which first constructs a volume graph based
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1460 Q. Wang et al.

on the saliency value of each voxel, then applies the mini-
mum cost graph cut algorithm to generate a connected and
less important manifold surface. To remove contextual voxels
while preserving important features in the reduced volume,
the voxel’s saliency value can be derived from the volume
itself, such as the gradient and curvature, and be specified
by the user through the transfer function. As the memory
requirement of the volume graph is increasing with the size
of the volume, a multilevel banded method is introduced to
overcome the memory limit in reducing large volume data
sets, and it also improves the computational efficiency of
surface carving.

The main contributions of this paper are:

(1) proposing surface carving to implement volume data
reduction;

(2) designing a novel volume saliency measure to drive vol-
ume reduction;

(3) introducing a multilevel banded approach for large vol-
umes to overcome the memory limit and accelerate the
reduction process;

The paper is structured as follows. The related work is dis-
cussed in Sect. 2. Section 3 describes the automatic volume
data reduction in detail. We show several examples of surface
carving and discuss the large data reduction and progressive
transmission and reconstruction applications in Sect. 4.

2 Related work

As volume reduction can be considered as one volume edit-
ing operation, we first review previous volume editing oper-
ations. Direct volume editing, proposed by Bürger et al. [5],
introduces 3D spherical brushes to interactively edit the vol-
ume data on GPUs, for example user-guided feature color-
ing, erasing, segmentation and annotation. Yuan et al. [6] pre-
sented two-pass graph cut algorithm to cut out 3D volumetric
features based on user’s strokes in the rendered image. Zhao
et al. [7] reported an intelligent volume brush, iVolBrush, for
effective 3D painting on the volume. WYSIWYP (What You
See Is What You Picking) [8] allowed the user to intuitively
select the most visible semi-transparent feature displayed in
the rendered image accurately.

Giachetti et al. [9] presented an edge-directed volume
supersampling method for high-quality rendering of large
medical data sets. This method keeps constant the original
energy of the subdivided voxel and optimizes edge continuity
in the volume upscaling process. Wang et al. [10] proposed
a volume upscaling method based on local self-examples
to make feature analysis more accurate and efficient. Our
method is an inverse operation to volume upscaling, reduc-
ing the size for interactive visualization of large volumes.

Volume downsampling and cropping are two common vol-
ume reduction approaches for large volume visualization.
Volume downsampling has been used in multi-resolution
data representation for rendering large volume data sets
interactively [3,11]. It usually applies uniform subsam-
pling, or kernel-based filtering techniques to the volume
and constructs a multi-resolution data hierarchy. However,
this homogeneous downsampling does not distinguish fea-
ture and context and would blur the important features in
the low-resolution volume. Volume cropping also has the
functionality of volume reduction. In the crop-and-zoom
method [12], the user defines a volume-of-interest using a
bounding box, to crop and zoom the sub-volume out of the
large volume. Although cropping removes unimportant vox-
els in the periphery of the interested region, the sub-volume
may contain a lot of context or exclude part of prominent
features close the periphery. The proposed method intelli-
gently removes contextual voxels with a flexible geometric
constraint and keeps important features.

Image resizing is an active research topic in computer
graphics. Avidan and Shamir [13] presented seam carving
for content-aware image resizing. It searches for a connected
path of less important pixels by dynamic programming. This
idea has been extended to video retargeting by Rubinstein
et al. [14]. As dynamic programming cannot be directly
used for video retargeting, they derived an equivalent imple-
mentation by properly constructing the graph and resizing
the frames by the graph cut algorithm. The proposed sur-
face carving also generates a manifold surface with the least
energy by the graph cut algorithm, and carves out this sur-
face to achieve volume reduction while preserving salient
features.

The idea of the proposed volume data reduction is also
very similar to the focus + context technique in volume visu-
alization, preserving important features while removing or
suppressing less important contextual features. Viola et al.
[15] presented importance-driven volume rendering to high-
light important features by assigning them a high importance.
Wang et al. [16] introduced an energy optimization model
for the focus + context visualization. It deforms the volume
space based on the importance value of each voxel to mag-
nify features of interest. The deformed volume space can
also be resampled to generate a reduced data set with better
preserved features. Recently, the conformal magnifier pro-
posed by Zhao et al. [17] also magnifies a region of interest
by conformal mapping for the volume. It enlarges the user-
specified region of interest and suppresses the context with-
out any cropping. Our method is also based on the saliency
value of each voxel/feature, which could be defined by the
user like the importance value and user-specified features in
the previous focus + context researches. The volume reduc-
tion process can also be considered a deformation process,
deforming the less important and contextual surfaces while
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Surface carving based automatic volume data reduction 1461

magnifying important features implicitly. Unlike the contin-
uous manner of Wang et al. [16], which may not heavily
shrink the unimportant regions, our method can discretely
handle removal of the unnecessary content well.

3 Automatic volume reduction based on surface carving

The proposed multi-pass volume reduction method, surface
carving, intelligently removes less important or contextual
voxels while preserving salient features, and finally generates
a reduced volume at the desired size or reduction rate. In each
pass, surface carving reduces the chosen dimension by one by
finding and removing an unimportant or contextual manifold
surface in the other two dimensions based on voxels’ saliency
values. For example, surface carving can reduce the volume
with the size M×N×K to M×N×(K −1) in one pass, and
the carved surface is made of M×N voxels. This surface must
satisfy with two properties: monotonicity and connectivity.
Monotonicity means that the surface must include one and
only one voxel in each row in the reduced dimension, i.e.,
the surface should not overlap in the reduced dimension to
keep the shape of the reduced volume as a box. Connectivity
requires that the voxels of the surface must be connected to
minimize visual artifacts resulting from the voxel removal.

To satisfy these requirements, surface carving is derived
from seam carving for image resizing [13,14]. Dynamic pro-
gramming and graph cuts are two general computational
methods to find an optimal seam for image resizing. As
dynamic programming can not be directly extended to 3D,
this paper employs graph cuts to search for the optimal sur-
face. Our pipeline is illustrated in Fig. 1. Users can specify
the reduction size/rate. In each iteration for the input vol-
ume, a volume graph is first constructed with each voxel as
a node. The connection between nodes is based on the back-
ward scheme [14], and the energy costs of edges are defined
from voxels’ saliency values. These values can be computed
from the volume data set itself, such as the gradient magni-
tude, or specified by the user through the transfer function.
Then, surface carving is formulated as a minimum cost graph

cut problem. We use the graph cut algorithm to find the opti-
mal surface. Finally, the voxels of the optimal surface are
carved and the remaining voxels are packed into a reduced
volume for further processing. After several iterations of sur-
face carving, we can reduce the original volume data set to a
new volume with the specified size or reduction rate.

We will first describe the method for finding an unimpor-
tant or contextual manifold surface for a given dimension,
and then show how to use this method to achieve automatic
data reduction with the specified size or reduction rate.

3.1 Volume graph construction

A volume graph G = {V, E} is constructed for the input
volume. As each voxel is a node in the volume graph, the node
set V = {v1, v2, . . . , vn, S, T } contains n nodes representing
n voxels, and two virtual terminal nodes S (Source) and T
(Sink).

The edge set E connects the nodes based on the neighbor-
hood relationships among voxels and the selected dimension.
The directed edge with the direction from the source S to the
sink T is called the forward edge, otherwise it is the back-
ward edge. Let the selected dimension to be reduced is the Z
direction shown in Fig. 2. The terminal node S is connected
with forward infinite cost edges to all voxels on the boundary
X−Y plane with the minimum Z value (the leftmost plane of
the volume shown in Fig. 2). Similarly, the terminal node T
is connected with forward infinite cost edges from all voxels
on the boundary X − Y plane with the maximum Z value
(the rightmost plane of the volume shown in Fig. 2).

Each voxel is connected with different cost edges to
its neighborhood voxels. A typical voxel v(x, y, z) is con-
nected with two neighbor voxels v(x, y, z ± 1) by forward
edges with the cost C and backward infinite cost edges. The
voxel v(x, y, z) is also connected with eight diagonal voxels
v(x ±1, y, z±1) and v(x, y±1, z±1) by backward infinite
cost edges. Figure 2 shows an example for the voxel node
in blue with different edges indicated in solid black lines. In
summary, all backward edges are assigned with the infinite

Original Volume

Reduced VolumeGraph Cuts

Iterative Surface Carving 

Volume Graph Construction in 2D

Surface

Users specify the 
reduction size/rate

Fig. 1 The pipeline of automatic volume reduction. Users specify the
reduction size/rate. The saliency value of each voxel is derived from
the volume itself, or specified by the user through the transfer function.
Surface carving first constructs a volume graph satisfying monotonicity

and connectivity properties, and then applies the minimum cost graph
cut algorithm to find a less important or contextual manifold surface.
This process is iteratively applied to the reduced volume to create a
target reduced volume while preserving important features
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Fig. 2 The illustration of volume graph construction. The selected
dimension to be reduced is the Z direction. Virtual terminal nodes in
red, S and T , are connected with infinite weight edges to all voxels on
the leftmost and rightmost X −Y plane of the volume respectively. The
voxel in blue is connected to its neighboring voxels with different edge

costs in solid black lines. For forward directed edges (in the direction
from S to T ), the edge cost is C depending on the voxels of the edge,
and all backward directed edges (in the direction from T to S) are with
infinite weights

Fig. 3 Volume reduction without/with the spatial continuity constraint.
The lobster volume is reduced from 254 × 248 × 56 to 242 × 236 × 56.
a The original volume. The reduced volume b without and c with the

spatial continuity constraint. We can see that the reduced volume shows
better structure preserving if the constraint is considered

cost, while all forward edges among voxels are assigned with
the cost C , which is based on saliency values of two voxels
of the edge and will be discussed in the next section.

As this graph construction based on the backward scheme
has been proven satisfying monotonicity and connectivity
[14], the surface generated from the graph cut algorithm
is monotonic and connected to preserve continuity in the
reduced dimension and to avoid jittery artifacts. Similar to the
temporal continuity constraint in [14], our method considers
the spatial continuity constraint in the other two dimensions
(the X and Y dimensions in Fig. 2). Without the spatial conti-
nuity constraint, simply applying the seam carving operator
defined in [13] separately to each slice of the volume would
introduce serious distortions (Fig. 3).

3.2 Edge energy computation

Since surface carving is formulated as a minimum energy
problem, finding the less important or contextual surface is
equivalent to calculating the surface with the least amount of

energy. Thus, the definition of the edge cost C plays a cru-
cial role in the proposed volume reduction. Different spec-
ifications of the edge cost would lead to different volume
reduction results.

In surface carving, the edge costC is based on the saliency
values of voxels. As the meaning of saliency depends on
the application and the user, it is more suitable to provide a
generic way to include any saliency measure. Specially, we
consider two general saliency measures. One is the intrinsic
properties of the volume itself, such as the gradient mag-
nitude and the curvature. The other is the user specifica-
tion, such as the transfer function and the application-specific
term.

The saliency value for the voxel v is a weighted combina-
tion of these two measures as follows:

S(v) = λP(v) + (1 − λ)Q(v), (1)

where λ is a constant balancing the two components. P(v) is
the normalized intrinsic property measure, and Q(v) is the
user’s saliency specification. A large λ makes the reduced
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Fig. 4 Different volume
reduction results based on
different saliency measures for a
fuel volume. The volume is
reduced from 64 × 64 × 64 to
64 × 64 × 42. a The original
volume. The reduced volume
based on b the gradient
magnitude, c the curvature and
d the opacity transfer function

result keep voxels with a more important intrinsic property
while a small one preserves the salient structure specified by
the user. The edge cost C between the voxel v(x, y, z) and
v(x, y, z + 1) is defined as C(v(x, y, z), v(x, y, z + 1)) =
S(v(x, y, z)), and it is similar for other dimensions.

3.2.1 Intrinsic property measure

In volume visualization, users are usually interested in
boundary regions between homogeneous materials, and the
gradient magnitude is a well-defined property for the bound-
ary regions [18]. Hence, the gradient magnitude can be con-
sidered as the saliency value for each voxel. A voxel with
a high gradient magnitude may contain more salient infor-
mation, while a voxel with a low gradient magnitude is less
important or contextual.

The discrete gradient magnitude estimation for the voxel
v is defined as follows:

P(v) = ‖� f (v)‖, (2)

where f (v) is the scalar value of the voxel v, and � is the
gradient operator. When the gradient magnitude is used as the
edge cost in surface carving, the boundary of features will be
maintained while the voxels with low gradient magnitudes
are removed.

Besides the gradient magnitude, any intrinsic property,
such as the curvature and the symmetry, is a feasible saliency
measure for the volume and can be integrated into this intrin-
sic property measure. Figure 4 compares the surface carving
results for a fuel data set using different saliency measures.
Figure 4b, c is the volume reduction results based on the
gradient magnitude and the curvature as the saliency mea-
sure, respectively. Compared with the original volume data
in Fig. 4a, the top part of the fuel volume is preserved due to its
large gradient magnitude or curvature. More homogeneous
regions, like the bottom part of the volume, are likely to be

discarded for its low gradient magnitude in Fig. 4b. However,
these regions are preserved due to its high curvature in Fig. 4c.

3.2.2 User specification measure

As the voxels with the same intrinsic property may have
different importance for different applications, users’ prior
knowledge about important features should be also included
in the saliency measure. For example, the transfer function
is a widely used tool to allow users to classify features and
specify importance for each feature. Important features are
usually assigned with a high opacity to make them more visi-
ble, while contextual features are assigned with a low opacity
to make them transparency. Thus, voxels with a higher opac-
ity generally means more important, and we can define the
opacity of the voxel as the saliency value of this voxel:

Q(v) = α(v), (3)

where α(v) is the opacity of the voxel v. Meanwhile, the color
differences between neighboring voxels are the boundaries
specified by the user, and can also be included in the saliency
measure.

Figure 4d is the volume reduction result based on the opac-
ity transfer function. As can be seen clearly from these fig-
ures, when the user specifies different saliency values for
voxels, the proposed surface carving can automatically iden-
tify less important voxels and construct a manifold surface
to discard its voxels.

3.3 Graph cuts in surface carving

After the construction of the volume graph and the specifi-
cation of edge costs, the graph cut algorithm [19] is applied
to find the optimal less important or contextual manifold sur-
face. An S/T cut (or a surface cut) in the volume graph is
defined as a partitioning of the nodes into two disjoint subsets
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Fig. 5 The illustration of the
banded multilevel method in 2D

Original data

Volume 
coarsening

.

.

.

Surface carving on the 
coarsest volume graph

Surface carving on 
banded graph at the 

finer level

Minimum cut at 
the finest level

.

.

.

Minimum cut at 
the coarsest level

Coarsest data

Sset and Tset such that S ∈ Sset and T ∈ Tset . The cost of the
cut is the sum of the cost of the boundary edges across these
two sets, defined as follows:

Cd
cut =

∑

(vp,vq )∈E,vp∈Sset ,vq∈Tset
C(vp, vq), (4)

where vp and vq are two neighborhood nodes along the
reduced dimension d. Note that a cut cost is the sum of
the cost of directed forward edges. The optimal surface is
obtained by minimizing the cut cost Cd

cut , and this is the
minimum cost among all valid cuts. Based on the optimal
surface, the voxels of the surface are carved and the remain-
ing voxels are shifted and packed into a reduced volume for
further processing.

The computational time of surface carving depends on
the numbers of nodes and the number of edges in the graph,
which is approximately five times the number of nodes. The
memory requirement for the volume graph is also propor-
tional to the number of voxels in the volume. For large vol-
umes, larger than 256 × 128 × 128, the memory required by
the volume graph algorithm exceeds the limit allowed in a
typical 32-bit personal computer. In addition, computing the

minimal cut for the volume graph of such large volume is
time-consuming, maybe prohibitive, due to the polynomial
worst- case complexity [20].

Several acceleration methods have been proposed to
improve the graph cut algorithm in the image segmentation
field. Lombaert et al. [20] introduced a multilevel banded
graph cut method to reduce the memory requirement for large
images. Kohli and Torr [21] computed minimum cuts on an
updated graph, with speed gains up to two orders of mag-
nitude. Vineet and Narayanan [22] implemented the graph
cut algorithm on the GPU to accelerate the image segmenta-
tion algorithm. As the main challenge of surface carving is
the memory requirement for the large volume data set, we
employ the banded multilevel method [20] and extend it to
the volume graph.

The general process of the banded multilevel surface carv-
ing is illustrated in Fig. 5 using the 2D case. First, the input
volume is coarsened using a standard multi-resolution tech-
nique. Then, a minimal cut is computed on the coarsest vol-
ume graph constructed from the coarsest volume, as shown
the top right part of Fig. 5. The cut nodes are projected on
the successive higher resolution volume, and this results in a
narrow banded volume, which limits the candidate nodes to
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(a) (b) (c) (e) (g)(f)(d)x

z

y

z

Fig. 6 Volume reduction results with the reduction rate of about 50 %.
a–b The original bonsai volume from different views. c–e Each vol-
ume reduced along the x , y, z dimensions, respectively, resulting in
clear visual artifacts. f–g The reduced volume using the proposed sur-

face carving. The views of f, g are the same with these of a, b. Given
the reduction rate, our method preserves important features and detail
information as much as possible while removing contextual voxels

be extracted from the coarsest graph. The width of the nar-
row band could be controlled by the distance dst . The dila-
tion distance parameter is a vital important parameter in the
banded multilevel method. If dst is too small, the algorithm
may not be able to construct an optimal surface based on the
surface computed from the previous level volume. If dst is
too large, the computational benefits of the banded multilevel
method would be reduced. In our implementation, we found
that dst = 5 gives a good compromise between accuracy and
performance for experimented volumes with different reso-
lutions. Surface carving is applied to the banded volume and
calculate the optimal surface in this level. This uncoarsening
procedure is executed recursively in the successive higher
resolution banded volume until the minimum cut is obtained
for the original banded volume, yielding the final optimal
surface, as shown the bottom right part of Fig. 5.

All volume graphs except the coarsest graph are con-
structed from the banded volume, and they are significantly
smaller than the full volume at each level. As a result, both
the memory consumption and the running time of surface
carving are greatly reduced compared with a single surface
carving on the original volume, and this banded multilevel
method makes it possible to reduce large volumes with faster
speed and less memory consumption.

3.4 Automatic data reduction

After describing surface carving for a given dimension, this
section shows how to apply this method iteratively to imple-
ment automatic data reduction with the specified size or
reduction rate. Given the reduced volume size, we can per-
form surface carving in each dimension to be reduced succes-
sively until the reduced volume size reaches the given size.
For example, Fig. 3 is an volume reduction example of with
the given size 242 × 236 × 56, and the original volume size
is 254 × 248 × 56. In this situation, the proposed volume
reduction approach is similar to volume resizing.

Besides the reduced volume size, users can also specify
the reduction rate. It is a more convenient way for users and
more effective for volume reduction, as the reduction process
cannot only optimize the carved surface by minimizing the
importance of voxels on the surface, but also choose the opti-
mal direction with the least importance. Given the reduction
rate, we automatically find which of the three directions (x ,
y, or z) to carve in each iteration, so that the distortion or
artifact incurred is minimized. Since we aim at preserving
important features while reducing the volume data, surface
with the least cost C least

cut is selected and discarded, defined as
follows:

C least
cut = min {Cx

cut,C
y
cut,C

z
cut}, (5)

where Cx
cut, C

y
cut and Cz

cut are the minimum costs along the
x , y and z directions. By iteratively carving surfaces with the
least costs, we can obtain a reduced volume at the desired
reduction rate. As shown in Fig. 6, under the same reduc-
tion rate, results with carving along any of the three direc-
tions only clearly show more visual artifacts (Fig. 6c–e),
while the result optimized both the carved direction and sur-
face preserves important features and detailed information
(Fig. 6f–g).

It is usually difficult for users to specify the desired size or
reduction rate directly, as the inappropriate parameter may
result in serious visual artifacts due to over-reduction or can-
not reduce the volume effectively due to under-reduction. It
is, therefore, useful to indicate at what reduction rate, the
reduced volume starts to include the serious distortion or
clear visual artifact. Figure 7 shows the cost curve of the fuel
data set, i.e., the cost in each iteration, and it also indicates
the relation between the distortion incurred and the reduction
rate. All important features are preserved after carving 64 sur-
faces, because features are completely located in the middle.
As more surfaces carved, relatively less important and homo-
geneous regions (corresponding to the bottom part of the
fuel volume) are removed. The right part of the curve shows

123

Author's personal copy



1466 Q. Wang et al.

Fig. 7 Cost of each surface carving for a fuel volume

the cost for each surface carving increases rapidly, which
means much more important features will be distorted, and
this results in clear visual artifact. Thus, we suggest choosing
the optimal reduction rates at the critical inflection of the cost
curve to balance the reduction rate and reduced data quality.

4 Results and discussion

Different saliency measures can be used as the edge cost in
the volume graph construction to guide surface carving. Fig-
ure 8 compares the gradient magnitude, the opacity transfer
function and their combination for an atom volume. Surface
carving based on the opacity transfer function carves out con-
textual regions on the left side shown in Fig. 8b. Figure 8c
is the surface carving result based on the gradient magni-
tude. Since the blank regions under this transfer function have
smaller gradient magnitudes, these regions are compressed
during volume reduction. However, when the volume is fur-
ther reduced, the relatively less important regions around the
right boundary are discarded, as the gradient magnitudes in
these regions are smaller than the one in the middle blank

regions in the volume. The hybrid energy function based on
the opacity transfer function and gradient magnitude gives
the best volume reduction result shown in Fig. 8d (λ = 0.1
in Eq. 1). Contextual voxels are symmetrically removed from
the left and right regions and the boundary of features are well
preserved.

Figure 9 compares three reduction methods: cropping, lin-
ear downsampling, and the proposed surface carving for the
foot data set, which mainly consists of tissues and bones. The
specified transfer function highlights the bones by assigning
large opacities to these voxels, so the saliency measure is the
opacity transfer function. Compared with the original volume
in Fig. 9a, the cropping result removes both tissues and bones
due to its fixed geometric constraint, and the result of linear
downsampling suffers from aliasing artifacts as it uniformly
reduces the tissues and bones. Surface carving selectively
removes voxels of tissues between bones while retaining the
bones as much as possible in fitting the smaller volume size.
As shown in the amplified sub-figures, the details of bones
after surface carving are preserved better than the one in lin-
ear downsampling.

The volume reduction results of these three methods for
a carp volume data set are shown in Fig. 10. As the user
generally is interested in the bones, and the saliency value of
each voxel is the opacity. Since the bones are almost filled
up with the whole volume, the cropping method may remove
the head or tail of the carp, and the linear downsampling
method has jaggy artifacts for the thin bones in the body of
the carp. Surface carving discards less important voxels on
connected manifold surfaces and creates a saliency-guided
reduced volume, which preserves the important features and
minimizes visual artifacts.

To quantitatively measure data loss of three reduction
methods, we use the following metric to compare the impor-
tant information preservation between two volume data sets:
∑

α(v′)C(v′)∑
α(v)C(v)

, (6)

where C(v′) and C(v) are the colors of voxel v′ and v

obtained from the reduced and original volumes, respec-

Fig. 8 This figure compares different saliency measures for a hydro-
gen atom volume. The volume is reduced from 128 × 128 × 128 to
92 × 128 × 128. a The original volume. b The reduced volume based
on the opacity transfer function. The blank regions between two compo-
nents on the left side are removed. c The reduced volume based on the
gradient magnitude. As the blank regions under this transfer function

have non-zero gradient magnitudes, the carved surfaces are symmetric
and the voxels of the feature boundary on the right side are also removed
due to its relatively small gradient magnitude. d The reduced volume
based on the hybrid combination of the opacity transfer function and
gradient magnitude
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Fig. 9 The first row compares the cropping, linear downsampling, and
surface carving for volume reduction on a foot data set. The volume is
reduced from 256 × 256 × 256 to 200 × 256 × 180. a The original vol-
ume. b The reduced volume using the cropping method with the feature
itself removed. c The reduced volume using the linear downsampling

method with jaggy artifacts. d The reduced volume using the proposed
surface carving. The second row shows the progressive volume trans-
mission process. e The reduced volume (d) is displayed in the mobile
device. f, g are two intermediate results of volume reconstruction from
(d) to (a), whose size ranges from 215 × 256 × 200 to 235 × 256 × 230

Fig. 10 The left part of this figure compares the cropping, linear down-
sampling, and surface carving for volume reduction on a carp data set.
The volume is reduced from 512×256×256 to 382×256×256. a The
original volume. bThe reduced volume using the cropping method with
the feature itself removed. c The reduced volume using the linear down-

sampling method with discontinuous artifacts. d The reduced volume
using the proposed surface carving with important features and detail
information preserved. e–g Close-ups correspond to the black boxes
in a–d

Table 1 The visual information preservation of cropping, downsam-
pling, and our reduced data sets

Data sets Cropping Downsampling Our method

Fuel 0.1352 0.2765 0.2967

Foot 0.8360 0.4931 0.9993

Carp 0.9472 0.7478 0.9351

tively. In this metric, we multiply each voxel color by its
opacity since the visual loss of a more transparent voxel
is less noticeable. As shown in Table 1, our method has

overall minimum data loss in terms of the visual informa-
tion preservation, as surface carving explicitly considers the
importance of voxels to preserve important features. The
visual information preservation in our reduced carp volume at
330×256×256 is less than that of the cropping method. This
is because the main visual information of the carp volume
under this transfer function is in its head (the tail is cropped),
and the bones are uniformly distributed in the volume space
(our method has to carve some bones). Figure 11 shows the
relation between the visual information preservation and the
reduction factor for the carp volume. Our method performs
better than cropping as the reduction factor increases.
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Fig. 11 The relation between the visual information preservation and
the reduction factor for the carp volume. The rapid decreasing of down-
sampling is due to that most of the important regions are uniformly
carved. When the reduction factor increases, our method performs bet-
ter than the cropping method. The black line indicates the number of
surface carving in Fig. 10

Figure 12 shows a data reduction example to obtain the
optimal reduction results, when considering the visualization
quality. The opacity transfer function is used for the saliency
values of voxels. Similarly defined in the Fig. 7, we choose
the reduction rates at the critical inflection of the cost curve,
which are visualized in Fig. 12b–d. In addition, we suggest
no more surface should be carved when we get the volume
like Fig. 12d, for the reason that the semantic information,
such as the global structure, will be destroyed.

4.1 Progressive volume transmission and reconstruction

One application of the volume reduction is progressive vol-
ume transmission and reconstruction. When a volume I is

transmitted over a communication line, one would like to
reduce the waiting time and display the rendered result as
soon as possible. Our approach is first to reduce the original
volume to produce the base volume I n and the n − 1 carved
surfaces {si , i = 1, . . . , n−1}. The base volume is first trans-
mitted, followed by the surface record sn−1. Since the size of
the base volume is much smaller than that of the original vol-
ume, the transmission and rendering time are largely reduced.
Then, a new volume I n−1 is reconstructed through combin-
ing the base volume I n with the surface sn−1. This surface
sn−1 contains all the information, such as the intensity and
the 3D coordinate of each voxel, the reduction dimension.
Lastly, since the surface carving is lossless, the original vol-
ume I is reconstructed exactly after all n− 1 surface records
are received. Figure 9e shows the reduced volume rendered
in the mobile device and Fig. 9f–g shows two intermediate
results, approximating the original volume in a progressive
manner.

4.2 Performance

The performance of surface carving for first iteration
with/without the banded multilevel acceleration and the size
of the data sets are listed in Table 2. The data sets are illus-
trated in Figs. 1, 4, 6, 8, 9, 10 and 12. The performance
was measured on a PC with a dual core 3.0 GHz CPU and
8GB RAM.

As the size of the coarsest volume in our banded multilevel
implementation is at least 64×64×128, the fuel data set has
the same time for surface carving with/without acceleration.
When the volume size is larger than 256 × 128 × 128, it is
impossible to implement surface carving due to the memory
limit in a 32-bit PC. With the increasing volume size, the
speedup of the banded multilevel method is more than 7.8 in
our experiments. The computational time of surface carving

Fig. 12 Data reduction for a large volume data set with different reduc-
tion rates. a The original volume. Its size is 1024 × 1024 × 764. The
reduced volume with about b 51 % , c 44 % and d 39 % reduction rate.
These reduction rates are chosen as the critical inflection of the cost

curve, similarly defined in Fig. 7. No more surface should be carved for
the semantic information will be destroyed, when we get the reduced
volume like (d)
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Table 2 The computation time (in seconds) of one iteration of surface
carving

Data sets Resolution Carving time
without/with acceleration

Without With

Fuel 64 × 64 × 64 0.025 0.025

Balls 128 × 128 × 64 0.874 0.112

Bonsai (Fig. 6) 128 × 128 × 118 1.986 0.129

Atom 128 × 128 × 128 2.090 0.135

Vortex 128 × 128 × 128 2.714 0.312

Lobster 254 × 248 × 56 4.251 0.486

Foot 256 × 256 × 256 – 0.995

Carp 512 × 256 × 256 – 0.999

Bonsai (Fig. 12) 1024 × 1024 × 764 – 1.978

‘–’ Means unable to construct the volume graph due to the memory
limit

depends on the voxel number of the volume, which deter-
mines the size of the volume graph, and the features in the
volume, which affects the minimum energy process in the
graph cut algorithm.

As can be seen from Table 2, surface carving supports
interactive volume reduction for the small volume (less than
256 × 256 × 256), and it is possible to apply surface carv-
ing to the large volume data set (about 1.978 s for the
1024×1024×764 volume). When the intrinsic properties of
the volume are used as the saliency measure, the original vol-
ume can be reduced in the pre-processing and the appropriate
volume size can be selected for visualization based on the
application.

4.3 Limitations

The proposed surface carving is designed to preserve the
saliency structure of the volume during the reduction process.
Maintaining the important features comes at the expense of
content, and the reduction process would fail to preserve fea-
tures if there is no content, i.e., all voxels are important. To
solve some of those challenges, it would be helpful to specify
semantics for features as constraints and guide surface carv-
ing to select less important voxels in semantic. As compared
with natural images/videos, distances and relative positions
between features are more important for scientific data, espe-
cially for medical data. Thus, results of surface carving may
be not suitable for quantitatively visual analysis in some sit-
uations, but these results can be still used for preview.

5 Conclusion

We have introduced an automatic volume data reduction
method, surface carving, for interactive volume visualiza-

tion. The saliency value of each voxel can be determined by
the volume itself and be specified by users. Surface carving is
formulated as a minimum energy problem and solved by the
graph cut algorithm. It iteratively and successively removes
contextual voxels while preserving important features, and
generates an optimal volume at the specified size or reduc-
tion rate. We reduce large volume data sets by introducing
a multilevel banded method to overcome the memory limit.
Experiments demonstrate the effectiveness and efficiency of
our method, and it can be applied to large volume data sets
and implement data reduction for different applications. One
possible future issue, we plan to investigate, is using the for-
ward scheme [14] in the volume graph construction. Since
the forward scheme has the advantage of introducing the least
amount of energy into the reduced result, it will reduce dis-
tortions of well-structured features.
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